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Default

Counterfactual

27+62

in base-10

89

in base-9

100

Arithmetic
random

sorted(
  [“ab”, “ba”],
  key=lambda x: x[1],
)

in Python

[“ba”, “ab”]

w/ 1-based indexing

[“ab”, “ba”]

Code Exec.

GPT-4
Performance

If X are Y, Y are Z.
Are X Z?

X = corgis
Y = mammals
Z = animals

Yes

X = corgis
Y = reptiles
Z = plants

Yes

Logic

Find the main 
subject and verb

“They think LMs are 
the best.” in 
subj-verb-obj order

(they, think)

“Think are the best 
LMs they.” in 
verb-obj-subj order

(they, think)

Basic Syntax

Sort list by the 
second element

sorted(
  list,
  key=lambda x: x[1],
)

in Python

sorted(
  list,
  key=lambda x: x[2],
)

w/ 1-based indexing

Code Gen.

0 100

1819

(Wu et al. 2024)

"Reasoning": system actually solves the problem, generalize to arbitrary instances. 

"Reciting": system replicates solutions (or solution methods) from training data, 
expect worse generalization.



Outline

1. Planning 

2. NP-hard optimization problems 

3. Collaborative problem solving
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Planning

pop(R) stack(Y, G) stack(R, Y)

stack(R, G)

stack(G, R) . . .

. . .

iniTal state
goal state

Example: Blocksworld (simplified)



Planning with LLMs
One-shot prompt for Plan Generation with GPT-4’s plan

========================================
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the

actions I can doω→

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear

if the block has no other blocks on top of it and if the block is not picked up.ω→
I can only unstack a block from on top of another block if the block I am unstacking was really on

top of the other block.ω→
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block

is clear.ω→
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the blue block is clear, the yellow

block is clear, the hand is empty, the blue block is on top of the orange block, the red block
is on the table, the orange block is on the table and the yellow block is on the table.

ω→
ω→
My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand is

empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.

ω→
ω→
My goal is to have that the orange block is on top of the red block.

My plan is as follows:

[PLAN]
--------- GPT-4 response ---------
unstack the yellow block from on top of the orange block
put down the yellow block
unstack the red block from on top of the blue block
put down the red block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]
--------- Extracted plan ---------
(unstack yellow orange)
(put-down yellow)
(unstack red blue)
(put-down red)
(pick-up orange)
(stack orange red)

-------- Ground truth plan ---------
(unstack yellow orange)
(put-down yellow)
(pick-up orange)
(stack orange red)
================SUCCESS================

Cost-Optimal Planning: The prompt is quite similar to the one used in the earlier test case with a
few changes. We modify the lifted domain description by including a statement that associates a cost
with each action. To make the concept of action cost better fit into common sense domains, we can
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(One-shot prompTng strategy of Valmeekam et al. 2023)



"LLMs can't plan"

(PlanBench, Valmeekam et al. 2023; table from KambhampaT et al. 2024)

LLM-Modulo Framework for Robust Planning

Domain Method Instances correct
GPT-4o GPT-4-

Turbo
Claude-
3-Opus

LLaMA-
3 70B

Gemini
Pro

GPT-4

Blocksworld
(BW)

One-shot 170/600
(28.33%)

138/600
(23%)

289/600
(48.17%)

76/600
(12.6%)

68/600
(11.3%)

206/600
(34.3%)

Zero-shot 213/600
(35.5%)

241/600
(40.1%)

356/600
(59.3%)

205/600
(34.16%)

3/600
(0.5%)

210/600
(34.6%)

Mystery BW
(Deceptive)

One-shot 5/600
(0.83%)

5/600
(0.83%)

8/600
(1.3%)

15/600
(2.5%)

2/500
(0.4%)

26/600
(4.3%)

Zero-shot 0/600
(0%)

1/600
(0.16%)

0/600
(0%)

0/600
(0%)

(0/500)
(0%)

1/600
(0.16%)

Table 1. Results of state-of-the-art LLMs GPT-4o, GPT-4-Turbo, Claude-3-Opus, Gemini Pro and LLaMA-3 70B for Plan Generation
with prompts in natural language.

of GPT LLMs including GPT-4 (OpenAI, 2023), GPT-3.5
(OpenAI, 2022), InstructGPT-3 (Ouyang et al., 2022) and
GPT-3 (Brown et al., 2020). We also show that fine-tuning
does not seem to have a major effect on this dismal perfor-
mance. We demonstrate that the performance deteriorates
further if the names of the actions and objects in the domain
are obfuscated–a change that doesn’t in any way affect the
performance of the standard AI planners. This further sug-
gests that LLMs are more likely doing approximate retrieval
of plans than actual planning.

We continue to reconfirm these limitations over each of
the more recently released LLMs, including Claude Opus,
Gemini, GPT4-Turbo and GPT4-o. Table 1 shows that
all the state of the art LLMs show dismal performance on
PlanBench (Valmeekam et al., 2023b).

More recently, we have also investigated so-called “chain
of thought” prompting (Stechly et al., 2024b), as well as
ReAct-style step-by-step prompting (Verma et al., 2024a)
and found that they too are largely ineffective in improving
the planning performance of LLMs.

2.2. LLMs cannot verify plans and thus cannot improve
by self-critiquing

There still exists considerable optimism that even if LLMs
can’t generate correct solutions in one go, their accuracy
might improve in an iterative prompting regime, where
LLMs will be able to “self-critique” their candidate so-
lutions and refine them to the point of correctness (Yao
et al., 2023b;a; Shinn et al., 2023; Weng et al., 2023; Huang
et al., 2022). This belief seems to rest largely on the as-
sumption that verification of correctness should be easier
than generation for many reasoning problems–a rather clas-
sical argument from computational complexity. There are
grounds to be skeptical of this assumption as the complexity
of the reasoning task should be irrelevant to LLM perfor-
mance if what they are doing is approximate retrieval. In

general, unless LLMs are trained not just on “correct data,”
but also on “corrections data,” there is no a priori reason
to believe that their critiques would even be approximately
relevant, let alone actually correct.

Two of our studies–one on plan verification (Valmeekam
et al., 2023a) and the other on CSP verification (Stechly
et al., 2023) seem to throw cold water on this optimism.
In (Stechly et al., 2023), we systematically investigate the
effectiveness of iterative prompting in the context of Graph
Coloring, a canonical NP-complete reasoning problem. Our
methodology involves a principled empirical study of the
performance of GPT4 on two tasks: solving a large suite of
random graph coloring instances and, separately, verifying
the correctness of the candidate colorings–both in direct
(i.e., return the first solution generated by the LLM) and
iterative modes. In iterative modes, we experiment both
with an LLM critiquing LLM-produced solutions and an
external, guaranteed correct reasoner verifying solutions. In
both cases, we analyze whether the content of criticisms ac-
tually affects bottom-line performance. A more recent paper
further analyzes these results along with performance on
the 24 puzzle–a task that has been used by some researchers
claiming LLMs have the ability to self verify (Stechly et al.,
2024a).

Our results indicate that in direct mode, LLMs are, perhaps
not surprisingly, pretty bad at solving graph coloring in-
stances. More interestingly, they are no better at verifying
solutions. In iterative modes, given the inability of LLMs to
verify solutions, it should come as no surprise that our exper-
iments also show that the strategy of LLMs self-critiquing
their solutions does not improve over the baseline. We re-
port that the performance is in fact worse because the system
can’t recognize a correct coloring and thus merrily passes
over fortuitously correct colorings it has generated, ending
up with a wrong one! Similar results have also been reported
for planning problems in (Valmeekam et al., 2023c).

3

"Mystery Blocksworld": all symbols replaced by random strings. 
Poor performance of LLMs on mystery domains is evidence against reasoning 
(but could be seen as evidence of useful world knowledge).



... or can they?

● Let's evaluate on more planning domains: 
Automatically translate all IPC benchmark domains into English. 

● Let's evaluate more prompting strategies: 
Include chain-of-thought, ReAct (Yao et al. 2023). 

● Obvious that transformers without CoT will not solve 
PSPACE-complete problem in quadratic time.

In: (truck ?truck ) (location ?location)
Out: {?truck} is a truck {?location} is a location
In: (at ?obj ?loc) (in-city ?obj ?city)
Out: {?obj} is at {?loc} {?obj} is in the {?city}
In: action: drive-truck

parameters: (?truck ?l-from ?l-to ?city)
preconditions of drive-truck: ?truck is a truck and

?l-from is a location and ?l-to is a location and
?city is a city and ?truck is at ?l-from and ?l-from
is in city ?city and ?l-to is in city ?city

effects of drive-truck: it becomes true that ?truck is at ?l-to
and it is not the case anymore that ?truck is at ?l-from

Out: drive truck {?truck} from location {?l-from} in city
{?city} to location {?l-to} in the same city

Table 1: Example PDDL-to-NL translation by the 2NL-
LLM in the Logistics domain; predicates at the top; the
“drive-truck” action at the bottom.

NL snippets of actions are generated analogously using240

a similar prompt with different examples. In this case, each
example consists of the name of the action, its parameters,
and NL descriptions of the preconditions and effects that are
constructed using the NL snippets of the predicates gener-
ated by the 2NL-LLM as described above. The precondi-245

tion is constructed by joining NL descriptions of its positive
atoms by “and” and the conjoined negative preconditions are
preceded by “it is not the case that”. The NL descriptions
of the positive (add) and negative (delete) effects are con-
joined analogously. Moreover, we compile away parameter250

types using unary predicates (e.g., Helmert 2009). We use
the same four hand-crafted few-shot examples of actions in-
dependently of the target domain. As for predicates, snippets
not matching the formal requirements are revised once.

Table 1 (bottom) shows an example translation of the255

“drive-truck” action from the Logistics domain. It illustrates
two interesting characteristics of our NL snippets. First, the
order of the arguments in the generated NL snippet can devi-
ate from the order of the parameters in the input PDDL do-
main. The order of parameters can be arbitrary and might not260

match a natural sounding or even syntactically correct order
of arguments of the action verb in NL. We therefore include
one few-shot example where the order deviates in the prompt
for the 2NL-LLM to prevent the LLM from inferring that the
order needs to be identical. Second, the generated NL snip-265

pet of “drive-truck” states the type of each parameter, i.e.,
it makes use of the information from preconditions to infer
appropriate types. The complete conversion prompts can be
found in supplementary material Appendix C.

With the NL descriptions of predicates and actions in the270

form of snippets, we proceed with the generation of the do-
main and problem NL descriptions of the input PDDL task.

Figure 1b shows an excerpt from the NL domain descrip-
tion of the PDDL Logistics domain (Figure 1a). NL domain
descriptions are designed to include the same information as275

the input PDDL. They start with the description of all possi-
ble actions (APA), followed by their preconditions (APR)
and effects (AE ). If the domain is typed, a verbalization of
the type hierarchy is added also (T ). Our template takes care

P-LLM T-LLM Simulator + Plan 
Validator
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Figure 3: Overview of the set-up for the LLM plan genera-
tion and LLM action policy usage.

of the statements introducing each part of the prompt (e.g. 280

“I can carry out the following actions:”) as well as of ad-
equately composing the preconditions and effects into NL
sentences (e.g. “Once I #ACTION# it is not the case any-
more that #EFFECT#” for delete effects). The positive and
negative preconditions are presented in two individual sen- 285

tences. The same applies to the add and delete effects. More-
over, we use a heuristic to add indefinite determiners to en-
sure that the domain encodings refer to objects in general
instead of specific objects (e.g. “drive a truck A”) and that
the referring expressions allow to correctly infer which ex- 290

pressions refer to the same object.
The NL problem descriptions (see example in Figure 1c

and 1d) specify the goal condition (G), available objects with
their types (O), and the initial state (I).

The object names in PDDL problems can be any strings 295

of characters and they often consist of single letters and
numbers. For the NL description of the planning problems,
more natural and semantically related object names are de-
sirable. Our method generates new object names based on
their types. If a domain is typed, we name each object after 300

its (most specific) type and enumerate them, e.g. “t0” (Fig-
ure 1c) becomes “truck 0” (Figure 1d). Otherwise, we use
the most general PDDL type “object” for all object names.

The NL descriptions of the initial state and goal are con-
structed using the NL descriptions of the corresponding 305

predicates obtained by the 2NL-LLM. For example, the goal
“(at p0 l0-0)” (Figure 1c) is converted into “package 0 is at
location 0” and appended to “My goal is that in the end”
(Figure 1d). If there is more than one goal fact, they are
conjoined using “and”. The description of the initial state 310

is constructed analogously but starts with “Currently,”.

4 LLM Action Choice Mechanisms
Our automatic PDDL-to-NL translation can be used in con-
cert with different LLM action-choice techniques. We dis-
tinguish LLM planning techniques (returning a whole ac- 315

tion sequence at once) and LLM policy techniques (return-
ing one action at a time). They both consist of three core
components, namely P-LLM, T-LLM and a simulator (see
Figure 3). The NL description of the input PDDL task con-
structed using PDDL2NL described in Section 3 is passed 320

to the LLM (denoted as P-LLM) responsible for the actual
action choice (i.e., either a sequence of actions or a single
action). The output of the P-LLM is in the form of NL.
So, we pass its output to another LLM (denoted T-LLM)
which translates the NL descriptions of actions (or action 325

(AutoPlanBench: Stein, ..., K. ICAPS 2025)



Prompting strategies

LLM planning LLM policy
No
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Input: My goal is that in the end
#GOAL#
My current initial situation
is as follows:
#OBJECTS + INITIAL STATE#

Model: #NL ACTION 1#
#NL ACTION 2#
... 
[PLAN END]

Input: My goal is that in the end
#GOAL#
My current initial situation
is as follows:
#OBJECTS + INITIAL STATE#
Let‘s think step by step

Model: Think: #Thought 1#
Instruction: #NL ACTION 1#
Think: #Thought 2#
Instruction: #NL ACTION 2#
...
Think: #Thought N#
Instruction: You are finished
[PLAN END]

Input: My goal is that in the end #GOAL#
My current initial situation is
as follows:
#OBJECTS + INITIAL STATE#

Model: #NL ACTION 1#
Input: #OBSERVATION FROM ENVIRONMENT#
Model: #NL ACTION 2#
Input: #OBSERVATION FROM ENVIRONMENT#
...
Model: You are finishedBasic

Input: My goal is that in the end #GOAL#
My current initial situation is
as follows:
#OBJECTS + INITIAL STATE#

Model: Think: #Thought 1#
Instruction: #NL ACTION 1#

Input: #OBSERVATION FROM ENVIRONMENT#
Model: Think: #Thought 2#

Instruction: #NL ACTION 2#
Input: #OBSERVATION FROM ENVIRONMENT#
... 
Model: Think: #Thought N#

Instruction: You are finished

COT ReAct

ACT

Figure 5: Structure of the few-shot examples for the four
mechanisms.

choice mechanisms. We focus on two LLM planning tech-
niques (Basic and CoT) and two LLM policy techniques425

(Act and ReAct), described in what follows.

Basic. Here, we prompt the P-LLM to generate a complete
plan of NL actions. We follow Valmeekam et al. (2023b) and
present each action of the example plan in a separate line and
include a special tag to signal the end of the plan as shown430

in Figure 5 (top left).

CoT. Wei et al. (2022) showed that prompting an LLM to
generate a chain of thoughts, i.e., a sequence of explicit rea-
soning steps, improves the results on a range of reasoning
tasks. The exact form and content of a thought are flexible435

and can include explicit reasoning over the current state, the
next action or a goal to satisfy. For example, a thought in Lo-
gistics could be “Now, package 0 is at truck 1 and truck 1
is at location 2 in city 4. Package 0 needs to be moved to
location 3 in city 4.” The generation of thoughts by the P-440

LLM is elicited by adding thoughts between the actions in
the few-shot example (see Figure 5, bottom left) and addi-
tional instructions in the prompt (see part (3) in Figure 4).

ReAct. ReAct combines CoT reasoning with information
received from an environment. It was originally proposed for445

interactive decision-making tasks (Yao et al. 2023). At each
step, the P-LLM predicts a thought and an action and re-
ceives an observation from the simulator (see Figure 5, bot-
tom right). The complete output of the P-LLM including the
thought and the observation are added to the history buffer.450

Act. The Act mechanism works in the same way as ReAct
but does not include reasoning thoughts (Figure 5, top right).

Note that all few-shot examples are generated automat-
ically by converting one small example problem and its
plan into NL. For the LLM policy mechanisms, the simu-455

lator is used to generate the corresponding observations. For
CoT and ReAct, reasoning thoughts are required. We use an
LLM-based approach to obtain them: first the few-shot ex-
ample in the ReAct structure is created (Figure 5, bottom
right), but with placeholders instead of actual thoughts. We460

manually create thoughts for one example problem from Lo-

gistics and use this as few-shot example when prompting an
LLM to come up with appropriate thoughts to replace the
placeholders for other problems and domains. For the CoT
few-shot examples the observations get removed afterwards 465

(see supplementary material Appendix E).

5 Experiments
We evaluated all our action-choice mechanisms, Bas (Ba-
sic), CoT, Act and ReA (ReAct), on different kinds of in-
put prompts, and against representatives of other planning 470

mechanisms. We used GPT-4o as LLM for all evaluated
methods. The LLM policies Act and ReA are not guaranteed
to terminate and imposing a time limit is not an option here
because we use GPT-4o via its API with high variability of
response times. Therefore, we limit the number of steps for 475

the LLM policies in each instance by using twice the length
of the plan generated by satisficing greedy best-first search
(GBFS) with the FF heuristic (Hoffmann and Nebel 2001).

All results for the LLM-based action choice methods are
averaged over 5 runs; each run uses a different value of the 480

“seed” parameter of the GPT-4o API. We compare our meth-
ods with PDDL2NL prompts against the following methods.
Valm23: We compare to the manually provided NL

prompts designed by Valmeekam et al. (2023b) for the do-
mains Blocksworld, Depots and Logistics. 485

PDDL: Following the prior work of Silver et al. (2022), we
evaluate LLMs taking directly the PDDL input instead of its
NL descriptions. We use only Bas and Act as it is not clear
how to provide comparable thoughts for PDDL inputs. In
this case, the T-LLM is skipped. Instead, the PDDL action is 490

extracted from the output of the P-LLM using a regular ex-
pression and is passed directly to the simulator. Additionally,
the observations are modified to “The action #ACTION#
was successfully executed.” and “The action #ACTION# is
not applicable because #UNSAT-PRE#.” where #UNSAT- 495

PRE# is a concatenation of the unsatisfied PDDL predicates,
each followed by “is true” or “is false”. For a fairer com-
parison, we keep a slightly adapted task instruction as part
of the prompts and only replace the NL domain, goal and
initial state descriptions by their original PDDL input (see 500

supplementary material Appendix D for example prompts).
This is closer to the way in which Valmeekam et al. (2023b)
test PDDL inputs as they, in contrast to Silver et al. (2022),
include the PDDL domain description and also a short task
description in natural language. 505

Tpl: As a baseline PDDL-to-NL translation, we use a
simple template-based method for converting PDDL into NL
prompts: Unary predicates “(p ?x)” are translated to snippets
“{?x} is ‘p”’, higher-arity predicates “(p ?x1 ... ?xn)” are
translated to “{?x1}, ..., and {?xn} are in relation ‘p”’, and 510

PDDL actions “(act ?x1 ... ?xn)” are translated to “apply the
action ‘act’ to object {?x1}, ..., and object {?xn}” where the
word “object” is replaced with the parameter’s type when it
is specified. The composition of these snippets into the final
prompt is done in the same way as in PDDL2NL. Since it 515

is, again, not clear how to provide thoughts for this method,
we use it only with Bas and Act mechanisms.
rnd: To test whether LLM-based methods carry any infor-

mation at all, we use a simple random search (rnd) limited

(AutoPlanBench: Stein, ..., K. ICAPS 2025)



Results on generated problem instances

by the same number of steps as the LLM policy that, in ev-520

ery step, selects an applicable action uniformly at random.
The results for rnd are averaged over 10 random seeds.
BrFS, lmc, ff: We use breadth-first search (BrFS) to get

a sense of hardness of tasks and how LLM-based methods
compare to a trivial symbolic baseline. We also use two525

strong optimal and satisficing planner baselines, namely Aω

with the LM-cut heuristic (lmc) (Helmert and Domshlak
2009), and GBFS with the FF heuristic (ff) (Hoffmann and
Nebel 2001). These were run on Intel Xeon E5-2687W pro-
cessors with 30 minutes and 8 GB time and memory limits.530

We use two benchmark sets. First, we use 12 classical
planning domains (including the three used by Valmeekam
et al. (2023b); see Table 2). In each domain, we generate 21
relatively small solvable instances with optimal plan lengths
between 3 and 20. We select a small instance (short plan;535

see details in supplementary material Appendix B) for the
P-LLM few-shot example (plan or single action choice), and
use the remaining 20 instances as our benchmarks.

Second, we also compare the best PDDL2NL action-
choice mechanisms to the symbolic baselines (rnd, BrFS,540

lmc, ff) on a subset of IPC benchmarks where it is possible
and feasible. First, we disregard domains with PDDL fea-
tures unsupported by PDDL2NL (e.g., conditional effects,
quantifiers); and since LLM-based methods can rarely scale
beyond ff (as we show later), we remove instances that can-545

not be solved by ff within 30 minutes. Apart from this, the
main limiting factor is feasibility in terms of monetary cost
for GPT-4o calls. For 16 domains, the estimated cost (per
domain!) was > 150USD; for those, we considered only the
instances solved by BrFS, reducing the cost to → 150USD550

for 15 domains. In addition to the monetary issues, we could
not successfully run our method on Agricola, Folding, Park-
ing, Richochet-Robots, Sokoban, Tetris, and Tidybot (e.g.,
in some cases PDDL2NL failed to generate NL snippets due
to large numbers of action parameters). Overall, the resulting555

IPC benchmark set consists of 675 instances in 41 domains.

Comparison to Valm23. Table 2 shows the number of
solved tasks (coverage) per domain and overall. The com-
parison in Blocksworld, Logistics and Depot to manual de-
scriptions (see Valm23 rows) shows that using our auto-560

matic translations results in comparable performance. The
most significant difference can be observed for CoT and ReA
action-choice mechanisms in Logistics where our method
solves 5 and 7 more tasks, respectively. This is a little bit sur-
prising result considering that the hand-crafted descriptions565

by Valmeekam et al. contain additional information that is
not explicitly stated in PDDL (e.g., that all locations within
a city are directly connected) which is thus not available in
the NL descriptions automatically generated by PDDL2NL.

Comparison between PDDL2NL variants. The results570

of Bas with the automatic translation over all domains sup-
port previous findings that a basic prompting technique
does not work particularly well for plan generation (e.g.,
Valmeekam et al. 2023a; Liu et al. 2023). Adding reasoning
thoughts (CoT) improves performance substantially overall,575

though the impact varies per domain and can also deteriorate
performance (namely in the Grid domain).

Domains LLM-based Approaches
PDDL2NL Tpl PDDL Symb. Baselines

Bas CoT Act ReA Bas Act Bas Act rnd BrFS lmc ff
Block. 13 15 17 18 8 12 13 14 1 20 20 20↭

Valm23 15 14 17 18
Logistics 5 10 16 19 2 7 6 15 0 20 20 20↭

Valm23 3 5 17 12
Depot 0 5 5 13 0 5 0 3 0 20 20 20↭

Valm23 3 6 6 15
Ferry 7 12 14 18 0 13 8 17 0 20 20 20
Floortile 0 0 0 0 0 0 0 0 0 18 20 20
Goldm. 1 1 3 1 1 3 1 4 0 20 20 20
Grid 8 6 16 18 1 12 6 12 0 20 20 20
Grippers 9 17 17 20 10 20 12 19 0 20 20 20
Movie 20 20 20 20 20 20 20 20 3 20 20 20
Rovers 0 0 18 18 1 17 1 11 1 20 20 20
Satellite 14 16 20 20 11 18 14 18 0 20 20 20
Visitall 19 19 20 20 18 20 20 20 8 20 20 20
! (240) 96 121 166 185 72 147 101 153 13 238 240 240
Further scaled selected domains:
Block. 3 3 12 14 0 6 1 4 0 12 19 20
Ferry 0 0 7 15 0 9 0 17 0 8 13 20
Gripper 17 12 20 19 16 20 16 20 0 10 8 20
Visitall 9 2 16 18 7 17 14 16 1 10 18 20
! (80) 29 17 55 66 23 52 31 57 1 40 58 80

Table 2: Number of solved tasks out of 20 per domain.
“Valm23” rows show results of the manual encodings by
Valmeekam et al. (2023a) in the respective domains. We
show in bold the best LLM-based method. LLM-based re-
sults are averaged over 5 seeds, rnd over 10 seeds.

Using the LLM as an action policy instead of a plan gen-
erator in Act yields a major performance boost, dominating
Bas and CoT consistently in every domain, with major cover- 580

age improvements in many domains. This shows that the use
of LLMs, not for plan generation, but as a part of plan gener-

ation works much better—in this case, the LLM being used
for action choice only, with the computation of states be-
ing done symbolically and fed back into the LLM prompts. 585

Adding reasoning thoughts to Act in ReA yields another per-
formance boost, consistently dominating coverage across all
four LLM action choice mechanisms (with an exception in
Goldminer) and achieving best LLM performance.

Comparison to PDDL and Tpl. PDDL performs slightly 590

better than PDDL2NL for the Bas variant, whereas it is
the other way around for Act. Nevertheless, ReA with
PDDL2NL is clearly superior mainly because it uses nat-
ural sounding, intuitive thoughts in NL. It is not clear how
we could obtain such thoughts for PDDL. 595

The simple template-based method (Tpl) works decently
in some domains (e.g., Depot, Goldminer, or Visitall), but
PDDL2NL generates NL task descriptions that are at least
as good (and often better) in most domains. We think this is
because LLMs “understand” language and therefore the NL 600

descriptions generated by PDDL2NL are more naturally-
sounding than the Tpl descriptions. In comparison to PDDL,
Tpl is clearly the weaker method. It also seems that Tpl
works well in domains where also PDDL works well, and
whenever PDDL2NL works significantly better than Tpl, it 605

also works better than PDDL.

Comparison to symbolic baselines. The comparison to
the random baseline rnd clearly shows that LLM methods
are able to extract at least some useful information from the

(AutoPlanBench: Stein, ..., K. ICAPS 2025)
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Results on IPC benchmarks

task descriptions (with exception of Floortile where all LLM610

methods failed). As can be seen from the BrFS results, the
evaluated tasks are fairly small, and yet LLM methods fail
to solve them all. The performance of LLM-based methods
significantly lag behind symbolic methods: lmc and ff solve
all tasks, and even BrFS solves all tasks except for two in615

Floortile (the average runtime of lmc, ff and BrFS was 0.2,
0.1 and 6 seconds, respectively). This behaviour was already
observed before—here, we provide a more comprehensive
evaluation enabled by the automatic generation of NL de-
scriptions. Nevertheless, we can also see some encouraging620

results with ReA in many domains.

Scaling experiments. To see how far the LLM action
choice mechanisms can scale, we conduct more experiments
with larger generated tasks. We focus on Blocksworld, Ferry,
Grippers, and Visitall because ReA performs very well there625

and it is easy to scale these domains with a single parameter.
The scaled data for these domains is created as follows.

For each domain, we randomly generate a set of tasks, al-
ways varying only a single parameter: the number of blocks,
cars, balls and locations for Blocksworld, Ferry, Grippers630

and Visitall, respectively (see supplementary material Ap-
pendix B for more details). Then we run BrFS and lmc on
each task with 30 minutes and 8 GB limits. Then we identify
the value N of the varied parameter (e.g., number of balls in
Grippers) at which either BrFS or lmc is unable to solve the635

task. For the final dataset we select 20 problems per domain
for which the scaled parameter values are around the identi-
fied threshold N . We use the same few-shot examples as in
the first round of experiments. The bottom part of Table 2
shows the coverage on the scaled benchmark set.640

rnd can solve only a single task in Visitall, confirming
the vast superiority of LLM-based methods as much more
informed. BrFS is much better, but is also challenged by
the size of these tasks. It is outperformed by ReA in all do-
mains. While BrFS is a very basic symbolic baseline, this645

provides additional evidence of ReA’s planning abilities. In-
deed, remarkably, ReA outperforms the state-of-the-art opti-
mal planner lmc in 2 domains (and matches its performance
in 1). This is remarkable given that ReA, in contrast to lmc,
does not perform any search. On the other hand, it should650

be noted that Ferry and Grippers are structurally simple do-
mains, and that ReA—in contrast to lmc—does not give any
plan-optimality guarantee. The satisficing planner ff, which
is comparable to ReA in that regard, still has perfect cover-
age also on these scaled tasks, so the benchmarks are still not655

“hard enough” to be challenging for satisficing planning.
Overall, while LLM action choice at this point lags far

behind symbolic planners, there are isolated islands of good
performance, and our results do show promise for LLM
planning abilities, in particular if used as part of a larger660

symbolic planning machinery (as in case of Act and ReA).

IPC benchmarks. We also conducted experiments on a
subset of IPC domains with the best plan-generation (CoT)
and policy (ReA) methods (see Table 3). CoT and ReA solved
less than 25% in 32 and 27 IPC instance suites, respec-665

tively, and 0 tasks in 29 and 20 instance suites, respectively.
CoT solved all tasks solved by ff only in movie98, but ReA

Domains PDDL2NL Symbolic Baselines
CoT ReA rnd BrFS lmc ff

barman11/14 (10) 0 3 0 10 3 10
blocks00 (35) 3 22 0 21 28 35
childsnack14 (16) 6 15 0 0 0 16
gripper98 (19) 12 19 0 7 6 19
logistics98/00 (29) 1 28 0 12 21 29
movie98 (29) 29 29 0 29 29 29
rovers06 (6) 1 5 0 6 6 6
satellite02 (5) 1 4 0 5 5 5
transport08/11 (31) 3 23 0 18 19 31
visitall11/14 (13) 6 13 0 13 13 13
others (482 in 27 domains) 4 18 1 291 311 482
! (675) 66 179 1 412 441 675

Table 3: Number of solved tasks for selected IPC instance
suites. “others”: sum over IPC instance suites where both
CoT and ReA solved less than 25% of instances.

matched the performance of ff in movie98 and gripper98
(and 3 more suites limited to instances solved by BrFS), and
solved only one less task in childsnack14 and logistics00 670

(and 2 more suites limited by BrFS). This shows that LLM-
based methods are usually unable to scale to larger instances,
but also that there are domains where ReA is able to achieve
a good performance. In fact, it seems that ReA either works
fairly well or not at all (with very few outliers). 675

6 Conclusion
LLMs are rapidly gaining prominence in many sub-areas of
AI, and the question if and how they can be applied in AI
Planning is highly relevant. Following up on previous work
in this direction, we show how to automate the conversion of 680

PDDL into natural language prompts. Based on this, we con-
tribute broad experiments, highlighting that the automatic
conversion does not result in a performance loss relative to
the previous hand-crafted prompts, and examining perfor-
mance relative to representative symbolic methods. The re- 685

sults enhance our knowledge of LLM action choice perfor-
mance, and demonstrate convincingly that LLMs do have
some action-choice ability, outperforming random action se-
lection and, in a few cases, even a state-of-the-art optimal
planner. This performance is still far from the state of the art 690

in symbolic (satisficing) planning, yet it is achieved without
any search, pointing to the potential of more general uses of
LLMs in planning.

The most direct question for future work, in our view, is
how to combine LLMs with symbolic search methods. Our 695

work lays the basis for that through the automatic transla-
tion of PDDL into natural language prompts, which as our
results show boosts the LLM’s planning ability. The space
of possible combinations is vast. One could use the LLM to
suggest preferred actions in search, one could search around 700

LLM-predicted plans or actions, one could apply plan re-
pair to the LLM’s suggestion (as suggested by (Valmeekam
et al. 2023b) with LPG (Gerevini, Saetti, and Serina 2003)),
one could use LLM-generated plans as the basis for heuristic
functions, etc. For further research on the question whether 705

LLMs on their own (without search) can yield better plan-
ning performance, specialized training or neurosymbolic
methods may be interesting to look at.

(AutoPlanBench: Stein, ..., K. ICAPS 2025)

We excluded the remaining four IPC domains for cost reasons.



Takeaways

● LLM policies, which can observe the environment after each 
action, can be much more accurate than methods that predict 
the whole plan in one go. 
- This comes at the cost of having to actually execute these actions, 

which may be impractical in many domains. 

● Really important to evaluate LLMs across multiple domains. 
ReAct outperforms symbolic planners on some domains, 
is unpredictably bad on others. 

● Length generalization is a challenge: transformers are not good 
at generalizing to larger or more complex instances than their 
training data/few-shot examples (e.g. Yao & K. EMNLP 2022).



Length generalization

Figure 5: Comparison of performances of various GPT models as a function of the number of
objects in the Blocksworld instance

maximum step count for each experiment (ranging from 20-30), and if the model does not reach
the goal state within this number of steps, it is also considered to have failed.

In addition, for models that generate states alongside actions, these states are evaluated
using an F1 score. The state is comprised of a series of statements about each object in the
instance. Each of these statements can be matched against the gold state, making the F1 score
a useful measurement of how close the model-predicted state matches against the gold state.

3.5 Baseline GPT Results

The results for 4 di↵erent GPT experiments can be seen in Figure 5, graphed as the percent
accuracy as a function of the number of objects in the Blocksworld instance. When unspecified,
the in-context examples consist of instances with 4 objects.

GPT-3.5 shows low accuracy across the board, while the GPT-4 and GPT-4-turbo models do
well at lower object numbers, and then decline in accuracy as the number of objects increases.
The idea of “in-distribution” and “out-of-distribution” test examples is less of a factor, than in
fine-tuned models, as expected. GPT-4 is a clear winner as the number of objects increases, with
all other models falling to under 10% accuracy. But GPT-4’s performance is not high enough
to justify the large increase in price that would result from using it over GPT-4-turbo. Thus, in
the following section, the fine-tuned LLaMA results are compared against GPT-4-turbo (both
in Table 1)

3.6 Fine-Tuned LLaMA Results

For the fine-tuned experiments with LLaMA 2, I measured accuracy in terms of in-distribution
(ID) and out-of-distribution (OOD) test examples. These results can be seen in Table 1, where
the values represent the accuracy percentages on the test sets.

12

MSc thesis Lynn Zhou, 2024; in-context examples have four blocks

# blocks in Blocksworld test instance
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NP-hard optimization problems



Everyday 
Optimization 
Problems

Planning is PSPACE-complete, 
results are messy. More focused 
evaluation of complex problem 
solving? 

Many everyday problems are 
NP-hard optimization problems. 
Can LLMs solve them? 

Reasoning vs. reciting: 
Textbook form easier than 
everyday versions or not?



Hard Everyday Optimization Problems
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each costume is represented in HEP is shown in
Appendix A.

(TODO: We should probably draw a picture that
illustrates each problem.)

3.1 Graph Coloring

In Graph Coloring (GT4 in the Garey &
Johnson book), we have an undirected graph 𝐺 =(𝑉 ,𝐸). The goal is to assign each node a color
such that no two adjacent nodes have the same
color. We are looking for a color assignment that
uses the fewest colors possible.

We can invert Graph Coloring by asking
for color assignments in which no two non-adja-
cent nodes can have the same color. By asking
the LLM to solve the inverted problem on the
complement of 𝐺 (which has an edge between two
nodes if and only if there was no edge between
them in 𝐺), we can present the problem as inverted
while retaining the original solution. This ensures
that inverting the problem does not change its
difficulty.

We have constructed three costumes that are not
obviously about graph coloring.

 Student Groups. 𝑉  represents a set of
students, and 𝐸 represents friendships. A teacher
wants to assign students to as few groups as pos�
sible, while ensuring that no student is distracted
by a groupmate who is also a friend.

 Parties with Exes. 𝑉  represents a set of
people, and 𝐸 represents which friends used to be
in a romantic relationship with each other. Some�
body wants to celebrate their birthday with their
friends, while avoiding any awkwardness arising
from exes being at the same party. They want to
minimize the number of parties they have to plan.

 Taekwondo Tournament. 𝑉  represents
participants in a Taekwondo tournament, 𝐸 repre�
sents which participants will be fighting one an�
other in the tournament. The tournament organizer
wants to assign participants to warm�up rooms,
without giving opponents the chance to study each
other in advance.

3.2 Knapsack

(TODO: finish diagram)
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In Knapsack (MP9 in Garey & Johnson), we
have a knapsack with some capacity 𝐶 ∈ ℕ and
a set of items with weights 𝑤1,…,𝑤𝑛 ∈ ℕ and
values 𝑣1,…, 𝑣𝑛 ∈ ℕ. The goal is to find a subset
of items that maximizes the sum of the values of
these items, under the constraint that their total
weight must not be greater than the knapsack’s
capacity.

In the inverted variant, the goal is to minimize
the selected items’ value. To prevent the situation
where no items are selected, we add the constraint
that the items must at least fill the knapsack. By
asking the LLM to solve the inverted problem on
a knapsack of capacity ∑𝑤𝑖 − 𝐶, the optimal
solution consists of the items that were left out
of the knapsack in the standard variant. Thus, the
original and inverted problem have the same diffi�
culty.

We have constructed three costumes that are not
obviously about weights and values.

 Lemonade Stand. We have 𝐶 liters of
lemonade to sell at our lemonade stand and would
like to sell it for as much money as possible. Each
of our 𝑛 customers offers to pay a price 𝑣𝑖 for 𝑤𝑖
liters of lemonade.

 Sightseeing. We have 𝐶 hours to spend in
Paris and would like to visit attractions that give us
maximal total satisfaction. Each of the 𝑛 possible
attractions will give us some satisfaction 𝑣𝑖 and
take 𝑤𝑖 hours to visit.

 Party Planning. We have a decoration bud�
get of 𝐶 for the party we are planning, and we wish
to maximize the total coolness of our party. Each
potential decoration item has a coolness score of𝑣𝑖 and a price tag of 𝑤𝑖.
3.3 Traveling Salesman

(TODO: add diagram)
In Traveling Salesman (ND22 in Garey &

Johnson), we have a set 𝐶 = {1,…, 𝑛} of cities,
and for any pair of cities, we have a distance𝑑(𝑖, 𝑗) ∈ ℕ. The goal is to find the shortest round
trip between the cities. That is, we are looking for
a permutation 𝜋 : 𝐶 → 𝐶 that minimizes𝑑(𝜋𝑛, 𝜋1) + ∑𝑛−1

𝑖=1 𝑑(𝜋𝑖, 𝜋𝑖+1).

Textbook problem (GRAPH-COLORING) 
Given an undirected graph G = (V, E), assign 
colors to the nodes such that no two 
adjacent nodes have the same color. Use as 
few colors as possible.

Costumed problem (!  Parties With Exes) 
Your birthday is coming up, and you want to 
celebrate with all your friends. You do not 
want people who used to be in a 
relationship at the same party.  
How many parties do you need?

Inverted problem 
Given an undirected graph G = (V, E), assign 
colors to the nodes such that no two non-
adjacent nodes have the same color. Use as 
few colors as possible.

(Duchnowski, Pavlick, K., submiked)



Evaluation

● EHOP dataset: 3 NP-hard problems x 4 costumes x inverted? 
25 random instances for each of 6 instance sizes. 

● GPT-4o and Llama-3.1-70B-Instruct 

● Various prompting techniques, including ILP-Python: 
Use LLM to translate NL problem into linear program, then 
use optimal LP solver to find optimal solution.

19(Duchnowski, Pavlick, K., submiked)



Scaling to larger instances is hard
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Figure 2: Percentage of instances solved optimally, as a function of instance size. Results are on the textbook variants
in EHOP�RANDOM.

(2024), but not evaluated as systematically as in
this paper.

Finally, we compare LLM problem�solving ac�
curacy on each problem to greedy baselines. For
Graph Coloring, the greedy heuristic colors each
node with the smallest color (where colors are
represented by the numbers 1, 2, …) that does
not conflict with any neighbors that have already
been colored. Nodes are traversed in descending
order of degree. For Knapsack, the strategy iterates
through the items in descending order of density
(value divided by weight), adding each item to the
knapsack if it still fits in the remaining capacity.
For Traveling Salesman, we use the strategy of
always moving to the closest unvisited city. We
apply the greedy baselines directly to the original
problem instances. Note that all three greedy
strategies are linear�time algorithms which always
produce valid solutions, but give no guarantee of
optimality.

4.3 Evaluation

We run all models with all prompting strategies
on all instances in EHOP and classify the correct�
ness of the output using the following scheme. An
incompatible response is syntactically flawed; it
can’t be parsed as a solution to the problem. An er-
roneous response can be parsed as a solution, but
it violates constraints of the underlying problem;
for instance, it assigns adjacent nodes in Graph
Coloring the same color. Among the remaining
responses, we distinguish between optimal and

suboptimal solutions, depending on whether they
find a configuration that optimizes the objective
as much as possible. ILP Python can additionally
produce ILP code failures if the LLM�generated
code cannot be executed without errors. See Ap�
pendix B for examples of each result category.

5 Results
5.1 Scaling to larger instances is hard, except

for ILP

Figure 2 gives an overview of the percentage of in�
stances for each textbook problem that were solved
optimally, as a function of input size. For readabil�
ity, we focus on One�Shot CoT since it consistently
outperformed One�Shot and Zero�Shot CoT; full
results are in Appendix F. We find that as instances
are scaled up, the accuracy of most methods drops
dramatically. The greedy heuristics outperform all
LLM�based methods except ILP Python.

The ILP Python approach with GPT�4o main�
tains a higher accuracy even for larger instances.
In this condition, the LLM is still required to
make use of its “world knowledge” to flesh out the
textual problem into a fine�grained symbolic ILP
specification. However, it is freed up from having
to perform complex combinatorial reasoning and
keeping track of long chains of intermediate results
(Zhang et al., 2024), which becomes exponentially
harder as instances scale up. Unlike the other
strategies, the ILP approach does not expose the
LLM to the NP�hardness of the problem; the
complexity of the language�to�ILP translation task
grows linearly with input length.

(Duchnowski, Pavlick, K., submiked)

Observe how rarely CoT beats the greedy heuristics.



Textbook is easier than "everyday" variants

21(Duchnowski, Pavlick, K., submiked)

Problem Variant One-Shot Zero-Shot CoT One-Shot CoT ILP Python Greedy
Textbook 42.0 60.7 60.0 56.0
Inverted −39.3 −59.4 −59.3 −41.3 GCP

98.0

Costumed −6.2 −6.5 −4.7 −43.8
Textbook 22.7 48.0 50.0 89.3
Inverted +4.6 +2.7 −4.7 −0.6 KSP

75.3

Costumed −2.0 −1.8 −2.2 −7.5
Textbook 34.7 31.3 37.3 86.0
Inverted −20.7 −14.0 −9.3 −10.7 TSP

30.7

Costumed −8.3 −1.7 −9.1 −37.1



Takeaways

● LLM solvers methods do not scale well to larger instances. 
Neurosymbolic "ILP-Python" method works best overall. 

● All methods are vulnerable to costuming and especially inversion. 
LLMs adapt solution paths for frequent textbook problems, 
rather than performing general-purpose problem solving. 

● We did not try to help the LLM by specifying the base problem. 
This would not be feasible in the real world either. 

● Initial results with reasoning models (DeepSeek-R1): closes the 
gap, because it seems to recognize the base problem in a thought.
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RTG Neuroexplicit Models of Language, Vision, Action

Goal 1: Overcome limitations of purely neural models, especially with respect 
to generalization, robustness, and interpretability. 

Goal 2: Investigate theoretical and practical principles of designing effective 
neuroexplicit models. 

Funds 24 PhD students from 2023-2028. Including 13 PIs and ~20 associated  
members, is the largest research center on neurosymbolic models in Europe. 
See http://www.neuroexplicit.org/ for more information.

explicit
explicit 

= 
neural

neural

explicit

neural

NEURO 
EXPLICIT 
MODELS

http://www.neuroexplicit.org/


#3 
Collaborative problem-solving  

in dialogue



Collaborative problem solving

25

Please help me plan a two-week vacation 
in the Pacific Northwest. I am traveling 
with my wife and our two toddlers.

Okay! What's your approximate budget?

Let's not spend more than $200 per night 
on hotels and AirBnBs.

Great. Here's a first proposal. 
 
Let me know  what you  
like and dislike about it,  
and we'll fix it together.

The railway museum is a great idea, but 
let's make sure we're not driving for more 
than two hours each day.



Two-player Traveling Salesman

Joint solving of everyday NP-hard problems as platform  
for observing and modeling collaborative problem solving.

(Jeknić, Schlangen, K., SIGDIAL 2024; Jeknić & K., submiked)

Shall we move to the left? 

I'd prefer to go up instead. 

But I'd really like to avoid  
the top hallway if we can. 

...



Baseline agent

[Thought]: Since this is the beginning of the game, I'll look for the best path for 
myself and see what the options are. I am in the light world and have the 
following light coin distribution. From the living room (L), the best path for me 
initially is to the bathroom (B) where I can get 6 coins, followed by the kitchen 
(K) with 5 coins. I should start by asking the user how many ghost coins they 
might get on these paths so we can find the optimal path together. 

[Action]: ask(coins from L to B, L to K) 

[Message]: Hello! Let's get started on figuring out our best route. From the 
living room, I can collect the most light coins if we go to the bathroom, which 
would give me 6 coins, or to the kitchen, which gives me 5 coins. How many 
ghost coins would you collect on these paths?

[Thought]: From the living room, I can also collect 6 ghost coins if we go to the 
bathroom, and I can collect 1 ghost coin if we head to the kitchen. If we both 
go to the bathroom, we would collect a total of 12 coins (6+6), and if we go to 
the kitchen, we would collect a total of 6 coins (5+1). Therefore, heading to 
the bathroom would currently be the best option in terms of coins. 

[Action]: solve(["L", "B"]) 

[Message]: From the living room, both going to the bathroom would yield us 
the largest number of coins, with a total of 12 coins, since I would also get 6 
ghost coins on that path. Let's go to the bathroom first! How does that sound 
to you?

[Thought]: The user's response indicates they can collect the same number of 
ghost coins as I can collect light coins on the path to the bathroom (B), giving 
us a total of 12 coins. This is the optimal choice for us both from the living 
room, maximizing our combined coin collection at the start. 

[Action]: agree(L to B) 

[Message]: That sounds perfect! Going to the bathroom first gives us the 
maximum number of coins, with 12 in total. Let's start by heading to the 
bathroom!

(Self-play of GPT-4o baseline agent on a pair of six-node graphs)



Neurosymbolic agents
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Agent WSR ↭ ↭ ↭ ↭
Partner WSR ↭ ↭ ↭

Action History ↭ ↭
Visited ↭ ↭

Remaining ↭ ↭
IBP ↭

[["L", "E", 6],
 ["L", "B", 4],
 ["L", "K", 2], ... ]

Agent WSR

["L", "B", "K"]

Visited

["L", "B", "K", "A", "E",
"C", "L"]

Intermediate Best Path

[suggest(["L", "C"]), 
 agree-inner(["L", "C"]),
 ask("coin distribution
      between L and C")]

Action History

[["L", "B", 5],
 ["B", "K", 3],
 ["B", "A", 6], ... ]

Partner WSR

["L", "E", "A", "C"]

Remaining

Figure 3: (TODO: Fix representation examples, explain what the [L, E, 6]... are) The table on the left shows the
input structure for each version of the agent, with the rows represent the components and the columns showing
agent versions. The figure on the right shows a real example of each component.

Figure 3).323

The Partner WSR gets updated progressively324

throughout the game, after each message the part-325

ner sends. To obtain the new information, we use326

an external prompted LLM-based module whose327

goal is to isolate the information about the partner’s328

world state that has not been discovered already. To329

do this, it processes each message, with the addi-330

tional context of the currently known Partner WSR,331

indicating all the elements that have already been332

discovered. To further constrain the module and333

aid co-reference resolution, we pass information334

about the world that the partner is in (light/dark).335

This way, if a message contains claims about both336

the “ghost” and “light” coins, the module can dis-337

entangle it and identify which part of the utterance338

is relevant for the partner, given the world they are339

in. The module employs chain-of-thought (CoT)340

reasoning (Wei et al., 2022), first generating a rea-341

soning process (Thought), followed by the new342

information about the partner’s graph. The game343

framework processes this output and updates the344

Partner WSR to include the newly discovered in-345

formation.346

The primary error of this agent is its frequent347

inability to follow task rules, primarily reflected in348

not visiting all nodes and returning to the starting349

node (see Figure (TODO: FIG)). Additionally, the350

Partner WSR updating module occasionally makes351

mistakes due to insufficient context, particularly352

regarding to references to the partner’s current po-353

sition: for example, a message might be include an354

acceptance of a previous suggestion, and a subse-355

quent reference to the coins available “from there”,356

to the kitchen and to the empty room" (TODO: 357

Example). 358

4.4 Symbolic State-Tracking 359

Motivated by the previous agents’ inability to con- 360

struct a path including all nodes, we introduce an 361

agent augmented with a symbolic state-tracking 362

component: two dynamically updated structures 363

keeping track of the agreed upon nodes (Visited) 364

and the pool of remaining nodes (Remaining). 365

We replace the Action history module with the 366

two state-tracking modules, which are updated by 367

the framework whenever the visit action is gen- 368

erated (adding the agreed-upon node to Visited, 369

and removing the element from Remaining). This 370

is in contrast to the previous two agents, where we 371

preserve the actions in the memory by repeating a 372

progressively lengthier list of all generated actions. 373

By executing the visit action, we reduce the in- 374

put size, while still preserving the key negotiation 375

actions in the memory. This addition enables us to 376

further augment the module for updating the Part- 377

ner WSR by additionally passing the agent’s last 378

agreed-upon node, i.e., the last element in Visited, 379

in order to aid the module in co-referrence resolu- 380

tion. 381

Further, due to the previous agents’ lack of 382

Thought-MISSING usage and in order to simplify 383

the action use, we collapse the reasoning steps 384

(Thought-MISSING and Thought-DRAFT) into a 385

single Thought and remove the solve action. The 386

rest of the output format remains the same. 387

This version still lacks problem-solving improve- 388

ments, as illustrated by the tendency to generate 389

5

Agent tends to confuse own graph and what it knows about the other agent's graph  
→ track symbolically what we know about other player's graph  

Agent tends to generate invalid paths 
→ track of partial path that has been agreed on so far



Results

Identical Correct Optimal
Baseline 99 71 28
Grounding 100 65 25
State-tracking 99 86 17
Problem-solving 98 98 45

Completed Optimal Score >90%
Baseline 90 10 25
Problem-solving 76 80 32



Improved agent can negotiate best solution

(self-play of two "problem-solving" agents with GPT-4o)



Evaluation with human subjects

(using the Slurk platform, Götze et al. 2022)

Identical Correct Optimal
Baseline 99 71 28
Grounding 100 65 25
State-tracking 99 86 17
Problem-solving 98 98 45

Completed Optimal Score >90%
Baseline 90 10 25
Problem-solving 76 80 32

https://slurp.ling.uni-potsdam.de/


Takeaways

● Baseline CoT system struggles to maintain goal-oriented 
dialogue to help user solve their problem. 

● Keeping key information in symbolic memory and injecting it  
into the thoughts helps both with problem-solving and with 
conversational grounding. 

● LLMs open up opportunities for (relatively) domain-independent 
collaborative problem solving. Domain-specific pieces of our 
prompting strategy could be easily replaced for other tasks.



How to establish trust?

formal specification solutionNL specification

solution

solutionformal specification

LLM

LLM

human in the loop, via LLMs?

each costume is represented in HEP is shown in
Appendix A.

(TODO: We should probably draw a picture that
illustrates each problem.)

3.1 Graph Coloring

In Graph Coloring (GT4 in the Garey &
Johnson book), we have an undirected graph 𝐺 =(𝑉 ,𝐸). The goal is to assign each node a color
such that no two adjacent nodes have the same
color. We are looking for a color assignment that
uses the fewest colors possible.

We can invert Graph Coloring by asking
for color assignments in which no two non-adja-
cent nodes can have the same color. By asking
the LLM to solve the inverted problem on the
complement of 𝐺 (which has an edge between two
nodes if and only if there was no edge between
them in 𝐺), we can present the problem as inverted
while retaining the original solution. This ensures
that inverting the problem does not change its
difficulty.

We have constructed three costumes that are not
obviously about graph coloring.

 Student Groups. 𝑉  represents a set of
students, and 𝐸 represents friendships. A teacher
wants to assign students to as few groups as pos�
sible, while ensuring that no student is distracted
by a groupmate who is also a friend.

 Parties with Exes. 𝑉  represents a set of
people, and 𝐸 represents which friends used to be
in a romantic relationship with each other. Some�
body wants to celebrate their birthday with their
friends, while avoiding any awkwardness arising
from exes being at the same party. They want to
minimize the number of parties they have to plan.

 Taekwondo Tournament. 𝑉  represents
participants in a Taekwondo tournament, 𝐸 repre�
sents which participants will be fighting one an�
other in the tournament. The tournament organizer
wants to assign participants to warm�up rooms,
without giving opponents the chance to study each
other in advance.

3.2 Knapsack

(TODO: finish diagram)

12
kg

In Knapsack (MP9 in Garey & Johnson), we
have a knapsack with some capacity 𝐶 ∈ ℕ and
a set of items with weights 𝑤1,…,𝑤𝑛 ∈ ℕ and
values 𝑣1,…, 𝑣𝑛 ∈ ℕ. The goal is to find a subset
of items that maximizes the sum of the values of
these items, under the constraint that their total
weight must not be greater than the knapsack’s
capacity.

In the inverted variant, the goal is to minimize
the selected items’ value. To prevent the situation
where no items are selected, we add the constraint
that the items must at least fill the knapsack. By
asking the LLM to solve the inverted problem on
a knapsack of capacity ∑𝑤𝑖 − 𝐶, the optimal
solution consists of the items that were left out
of the knapsack in the standard variant. Thus, the
original and inverted problem have the same diffi�
culty.

We have constructed three costumes that are not
obviously about weights and values.

 Lemonade Stand. We have 𝐶 liters of
lemonade to sell at our lemonade stand and would
like to sell it for as much money as possible. Each
of our 𝑛 customers offers to pay a price 𝑣𝑖 for 𝑤𝑖
liters of lemonade.

 Sightseeing. We have 𝐶 hours to spend in
Paris and would like to visit attractions that give us
maximal total satisfaction. Each of the 𝑛 possible
attractions will give us some satisfaction 𝑣𝑖 and
take 𝑤𝑖 hours to visit.

 Party Planning. We have a decoration bud�
get of 𝐶 for the party we are planning, and we wish
to maximize the total coolness of our party. Each
potential decoration item has a coolness score of𝑣𝑖 and a price tag of 𝑤𝑖.
3.3 Traveling Salesman

(TODO: add diagram)
In Traveling Salesman (ND22 in Garey &

Johnson), we have a set 𝐶 = {1,…, 𝑛} of cities,
and for any pair of cities, we have a distance𝑑(𝑖, 𝑗) ∈ ℕ. The goal is to find the shortest round
trip between the cities. That is, we are looking for
a permutation 𝜋 : 𝐶 → 𝐶 that minimizes𝑑(𝜋𝑛, 𝜋1) + ∑𝑛−1

𝑖=1 𝑑(𝜋𝑖, 𝜋𝑖+1).



Conclusion

LLMs for solving complex problems

Optimization with LLMs

Planning with LLMs

Collaborative problem solving
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of items that maximizes the sum of the values of
these items, under the constraint that their total
weight must not be greater than the knapsack’s
capacity.

In the inverted variant, the goal is to minimize
the selected items’ value. To prevent the situation
where no items are selected, we add the constraint
that the items must at least fill the knapsack. By
asking the LLM to solve the inverted problem on
a knapsack of capacity ∑𝑤𝑖 − 𝐶, the optimal
solution consists of the items that were left out
of the knapsack in the standard variant. Thus, the
original and inverted problem have the same diffi�
culty.

We have constructed three costumes that are not
obviously about weights and values.

 Lemonade Stand. We have 𝐶 liters of
lemonade to sell at our lemonade stand and would
like to sell it for as much money as possible. Each
of our 𝑛 customers offers to pay a price 𝑣𝑖 for 𝑤𝑖
liters of lemonade.

 Sightseeing. We have 𝐶 hours to spend in
Paris and would like to visit attractions that give us
maximal total satisfaction. Each of the 𝑛 possible
attractions will give us some satisfaction 𝑣𝑖 and
take 𝑤𝑖 hours to visit.
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get of 𝐶 for the party we are planning, and we wish
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potential decoration item has a coolness score of𝑣𝑖 and a price tag of 𝑤𝑖.
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In Traveling Salesman (ND22 in Garey &

Johnson), we have a set 𝐶 = {1,…, 𝑛} of cities,
and for any pair of cities, we have a distance𝑑(𝑖, 𝑗) ∈ ℕ. The goal is to find the shortest round
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𝑖=1 𝑑(𝜋𝑖, 𝜋𝑖+1).



Thank you!


