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LLMs for Problem Solving

\ Problem instance with n cities ‘

param n := 5;

\ Variables: x[i, j] = 1 if the tour goes from cit
var x{i in 1..n, j in 1..n} binary;
var u{i in 2..n} >= 1, <= n-1;

\ Objective: Minimize total travel cost
minimize total_cost: sum{i in 1..n, j in 1..n} c[i, j]

\ Constraints: Every city has exactly one incoming and
subject to in_degree{j in 1..n}: sum{i in 1..n, i != j}
subject to out_degree{i in 1..n}: sum{j in 1..n, j != i

Step 3.3: Find the Optimal Tour

We evaluate all 24 possible tours:

1. (122->3->4->5->1):
Cost=10+35+12+18 + 25 =100

2. (122233534 1):
Cost=10+35+ 8 + 18 + 20 = 91

3.(12224-53>55->1):
Cost=10+30+12+8+25=85

\ Problem instance with n cities ‘

param n i= 5;

\ Variables: x[i, j] = 1 if the tour goes from ci
var x{i in 1..n, j in 1..n} binary;
var u{i in 2..n} >= 1, <= n-1;

\ Objective: Minimize total travel cost
minimize total_cost: sum{i in 1..n, j in 1..n} c[i, j]

\ Constraints: Every city has exactly one incoming and
subject to in_degree{j in 1..n}: sum{i in 1..n, i !'= j}
subject to out_degree{i in 1..n}: sum{j in 1..n, j != i




Reasoning or reciting?

GPT-4
Performance

Default
,/’;-_—_—:::>
Counterfactual

A D

"Reasoning"

Arithmetic

random ;

0 100

27+62

in base-10

89

in base-9

100

Code Exec.
—
.

sorted(
[“ab”’ ‘(ba”] y
) key=lambda x: x[1],

in Python
[“ba’, : “ab7’]
w/ 1-based indexing

[“ab”’ “ba”]

Code Gen.
—
]

Sort list by the
second element

in Python

sorted(
list,
key=lambda x: x[1],

w/ 1-based indexing

sorted(

SIS TER

key=lambda x: x[2],
D)

Basic Syntax

Find the main
subject and verb

“They think LMs are
the best.” in
subj-verb-obj order

(they, think)

“Think are the best
LMs they.” in
verb-obj-subj order

(they, think)

Logic
I
- —

If XareV,Y are Z.
Are X Z?

X = corgis
Y = mammals
Z = animals

Yes

X = corgis
Y = reptiles
Z = plants

Yes

: system actually solves the problem, generalize to arbitrary instances.

"Reciting": system replicates solutions (or solution methods) from training data,

expect worse generalization.

(Wu et al. 2024)



1. Planning
2. NP-hard optimization problems

3. Collaborative problem solving



#1
Planning

i Lt N



Planning

Example: Blocksworld (simplified)
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Planning with LLMs

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
— actions I can do

Pick up a block

Unstack a block from on top of another block
Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.

[ . .]

[STATEMENT]

As initial conditions I have that, the red block is clear, the blue block is clear, the yellow

— block is clear, the hand is empty, the blue block is on top of the orange block, the red block
<~ 1is on the table, the orange block is on the table and the yellow block is on the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]

unstack the blue block from on top of the orange block
put down the blue block

pick up the orange block

stack the orange block on top of the blue block
[PLAN END]

(One-shot prompting strategy of Valmeekam et al. 2023) tr N



"LLMs can't plan”

Domain Method Instances correct
GPT-4o0 GPT-4- Claude- LLaMA- Gemini GPT-4
Turbo 3-Opus 370B Pro

One-shot  170/600 138/600 289/600 76/600 68/600 206/600

g%%‘sw"rld (28.33%) (23%) 4817%)  (12.6%)  (113%)  (34.3%)
Zetoshot  213/600  241/600  356/600  205/600  3/600 210/600

(355%)  (40.1%)  (593%) (34.16%)  (0.5%) (34.6%)

Mystery BW  One-shot  5/600 5/600 /600  15/600 2/500 26/600
(Decepive) 083%)  (0.83%) 13%)  (2.5%) (0.4%) (4.3%)
Zeroshot  0/600 1/600 0/600 0/600 (0/500) 1/600

(0%) (0.16%) (0%) (0%) (0%) (0.16%)

"Mystery Blocksworld": all symbols replaced by random strings.
Poor performance of LLMs on mystery domains is evidence against reasoning
(but could be seen as evidence of useful world knowledge).

vt IX

(PlanBench, Valmeekam et al. 2023; table from Kambhampati et al. 2024)



... or can they?

® |et's evaluate on more planning domains:
Automatically translate all IPC benchmark domains into English.

® |et's evaluate more prompting strategies:
Include chain-of-thought, ReAct (Yao et al. 2023).

® Obvious that transformers without CoTl will not solve
PSPACE-complete problem in quadratic time.

./ LLM planning NL PDDL

p—
~ a Plan Plan Simulator + Plan
%) ()] L—p _ _ . 7,
g = [ P-LLM | ‘ Ui | ‘ Validator 4
o0 —l [e) c
= P c s
s N Qo i 0
] a) g |/ ttMpolicy NL PDDL S

— (&)
— 0 a action action . c
o a Simulator + Plan
o S P-LLM T-LLM . 5

> > = Validator
—/ —/ .
J— NL Observation

(AutoPlanBench: Stein, ..., K. ICAPS 2025)



Prompting strategies

LLM planning LLM policy
Input: My goal 1is that in the end Input: My goal is that in the end #GOAL#
#GOAL# My current initial situation 1is
My current initial situation as follows:
_ﬁ is as follows: #0OBJECTS + INITIAL STATE#
g) #OBJECTS + INITIAL STATE# Model: #NL ACTION 1#
_8 Model: #NL ACTION 1# Input: #OBSERVATION FROM ENVIRONMENT#
g #NL ACTION 2# Model: #NL ACTION 2#
2 a0 c Input: #OBSERVATION FROM ENVIRONMENT#
[PLAN END] I
Basic Model: You are finished ACT
Input: My goal 1is that in the end Input: My goal is that in the end #GOAL#
#GOAL# My current initial situation is
My current initial situation as follows:
is as follows: #OBJECTS + INITIAL STATE#
#OBJECTS + INITIAL STATE# Model: Think: #Thought 1#
@ Let‘s think step by step Instruction: #NL ACTION 1#
{i Model: Think: #Thought 1# Input: #OBSERVATION FROM ENVIRONMENT#
3 Instruction: #NL ACTION 1# Model: Think: #Thought 2#
= Think: #Thought 2# Instruction: #NL ACTION 2#
Instruction: #NL ACTION 2# Input: #OBSERVATION FROM ENVIRONMENT#
Think: #Thought N# Model: Think: #Thought N#

(AutoPlanBench: Stein, ...

Instruction: You are finished

[PLAN END]

COT

, K. ICAPS 2025)

Instruction: You are finished

ReAct




Results on generated problem instances

LLM-based Approaches

Domains PDDL2NL Tpl PDDL Symb. Baselines
Bas CoT Act ReA|Bas Act|Bas Act||rnd BrFS 1lmc ff
Block. 13 15 17 18] 8 12| 13 14 1 20 20 20
LValm23| 15 14 17 18
Logistics 5 10 16 19, 2 7| 6 15 0 20 20 20
LValm23| 3 5 17 12
Depot O 5 5 131 0 5, 0 3 0O 20 20 20
LValm23| 3 6 6 15
Ferry 7 12 14 18| 0 13 8 17 0O 20 20 20
Floortile O O O 0o o0 o o o 0 18 20 20
Goldm. 1 1 3 1 1 3 1 4 0O 20 20 20
Grid 8 6 16 18 1 12 6 12 0O 20 20 20
Grippers 9 17 17 20 10 20| 12 19 0O 20 20 20
Movie 20 20 20 20| 20 20 20 20 3 20 20 20
Rovers O O 18 18 1 17 1 11 1 20 20 20
Satellite 14 16 20 20| 11 18| 14 18 0O 20 20 20
Visitall 19 19 20 20| 18 20| 20 20 g8 20 20 20
2. (240) 06 121 166 185 72 147]101 153]|| 13 238 240 240
Further scaled selected domains:
Block. 3 3 12 14| O 6 1 4 0 12 19 20
Ferry O 0 7 151 0 9 0 17 0 8 13 20
Gripper 17 12 20 19| 16 20| 16 20 0 10 8 20
Visitall 9 2 16 18| 7 17| 14 16 1 10 18 20
2. (80) 29 17 55 66| 23 52| 31 57 1 40 58 80

(AutoPlanBench: Stein, ..., K. ICAPS 2025) }él‘ N



Results on IPC benchmarks

PDDL2NL | Symbolic Baselines

Domains CoT ReA|rnd BrFS 1lmc f£ff
barmanl1/14 (10) 0 3 0 10 3 10
blocks00 (35) 3 221 0 21 28 35
childsnack14 (16) 6 15 0 0O O 16
gripper98 (19) 12 19| O 7 6 19
logistics98/00 (29) 1 281 O 12 21 29
movie98 (29) 29 291 0 29 29 29
rovers06 (6) 1 5 0 6 6 6
satellite02 (5) 1 41 0 5 5 5
transportO8/11 (31) 3 23 0 18 19 31
visitall11/14 (13) 6 13 0 13 13 13
others (482 1n 27 domains) 4 18 1 291 311 482
> (67)5) 66 179 I 412 1 675

We excluded the remaining four IPC domains for cost reasons.

(AutoPlanBench: Stein, ..., K. ICAPS 2025)



e LLM policies, which can observe the environment after each
action, can be much more accurate than methods that predict

the whole plan in one go.
- This comes at the cost of having to actually execute these actions,
which may be impractical in many domains.

e Really important to evaluate LLMs across multiple domains.
ReAct outperforms symbolic planners on some domains,
Is unpredictably bad on others.

e Length generalization is a challenge: transformers are not good
at generalizing to larger or more complex instances than their
training data/few-shot examples (e.g. Yao & K. EMNLP 2022).




Length generalization

== opt-3.5 == gpt-4 == gpt-4-turbo == gpt-4-turbo (8 obj)

1.000

0.750

0.500

0.250 \ -

2 4 6 8 10

ratio of test instances solved

# blocks in Blocksworld test instance

MSc thesis Lynn Zhou, 2024; in-context examples have four blocks
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Everyday
Optimization
Problems

Planning is PSPACE-complete,
results are messy. More focused
evaluation of complex problem
solving?

Many everyday problems are
NP-hard optimization problems.
Can LLMs solve them?

Reasoning vs. reciting:
Textbook form easier than
everyday versions or not?




Hard Everyday Optimization Problems

Textbook problem (GRAPH-COLORING)
Given an undirected graph G = (V, E), assign
colors to the nodes such that no two

adjacent nodes have the same color. Use as
few colors as possible.

Costumed problem (€ Parties With Exes)

Your birthday is coming up, and you want to
celebrate with all your friends. You do not
want people who used to be in a
relationship at the same party.

How many parties do you need?

Inverted problem

Given an undirected graph G = (V, E), assign
colors to the nodes such that no two non-
adjacent nodes have the same color. Use as
few colors as possible.

(Duchnowski, Pavlick, K., submitted)

18



Evaluation

e EHOP dataset: 3 NP-hard problems x 4 costumes x inverted?
25 random instances for each of 6 instance sizes.

® GPT-40 and Llama-3.1-70B-Instruct

® Various prompting techniques, including ILP-Python:
Use LLM to translate NL problem into linear program, then
use optimal LP solver to find optimal solution.

(Duchnowski, Pavlick, K., submitted) 19



Scaling to larger instances is hard

Graph Coloring Knapsack Traveling Salesman
&

100 g

80

60

40

Optimality Rate

—#— GPT One-Shot CoT

- - GPT ILP Python /‘/\\v
—=#— Llama One-Shot CoT Trp e o
-=-- Llama ILP Python

—eo— Greedy

4 5 6 7 8 9 4 8 12 16 20 24 4 5 6 7 8 9
Nodes ltems Cities

Observe how rarely Col beats the greedy heuristics.

(Duchnowski, Pavlick, K., submitted) 20



Textbook is easier than "everyday" variants

® &—
Problem Variant One-Shot  Zero-Shot Col One-Shot Col  ILP Python  Greedy
Textbook 42.0 60.7 60.0 56.0 98.0
/ GCP Inverted -39.3 -594 -59.3 -41.3
Costumed -6.2 -6.5 -4.7 -43.8
Textbook 22.7 48.0 50.0 89.3 75.3
@ KSP Inverted +4.6 +2.7 -4.7 -0.6
Costumed -2.0 -1.8 -2.2 -7.5
Textbook 34.7 31.3 37.3 86.0 30.7
A TSP Inverted -20.7 -14.0 -9.3 -10.7
Costumed -8.3 -1.7 -9.1 -37.1

(Duchnowski, Pavlick, K., submitted)

21



e LLM solvers methods do not scale well to larger instances.
Neurosymbolic "ILP-Python" method works best overall.

e All methods are vulnerable to costuming and especially inversion.
LLMs adapt solution paths for frequent textbook problems,
rather than performing general-purpose problem solving.

e \We did not try to help the LLM by specifying the base problem.
This would not be feasible in the real world either.

e |[nitial results with reasoning models (DeepSeek-R1): closes the
gap, because it seems to recognize the base problem in a thought.

22



RTG Neuroexplicit Models of Language, Vision, Action

N
LTS O
// NEURO COLm  UNIVERSITAT 1INl (| C‘V Vi, C I s pA
Nl ExpLiCIT (P oes . = %, | weewnoue cenren ron
7 MODELS SAARLANDES ntormattk | e, | |inrommation secuniTy all

Goal 1: Overcome limitations of purely neural models, especially with respect
to generalization, robustness, and interpretability.

Goal 2: Investigate theoretical and practical principles of designing effective
neuroexplicit models.

Funds 24 PhD students from 2023-2028. Including 13 Pls and ~20 associated
members, is the largest research center on neurosymbolic models in Europe.
See http:/www.neuroexplicit.org/ for more information.



http://www.neuroexplicit.org/

#3
Collaborative problem-solving
in dialogue




Collaborative problem solving

Please help me plan a two-week vacation
in the Pacific Northwest. | am traveling
with my wife and our two toddlers.

. S

[Okay! What's your approximate budget? J/

\ )
Let's not spend more than $200 per night
on hotels and AirBnBs. ( , -
| ) Great. Here's a first proposal.
Let me know whatyou | = &Ly
like and dislike about it, |4 " _ )
and we'll fix it together. “ﬁf Mv j
P ¢
é\ \\\
) e 0
The railway museum is a great idea, but ) ’

let's make sure we're not driving for more
than two hours each day.

\. J




Two-player Traveling Salesman

Joint solving of everyday NP-hard problems as platform
for observing and modeling collaborative problem solving.

3 Shall we move to the left?

% I'd prefer to go up instead.

. But I'd really like to avoid
the top hallway if we can.

(Jekni¢, Schlangen, K., SIGDIAL 2024; Jekni¢ & K., submitted)



Baseline agent

[Thought]: Since this is the beginning of the game, I'll look for the best path for
myself and see what the options are. | am in the light world and have the

fol
Tali
(K)
mi;

[Ad

IM
livi
WG

[Thought]: From the living room, | can also collect 6 ghost coins if we go to the
bathroom, and | can collect 1 ghost coin if we head to the kitchen. If we both
go to the bathroom, we would collect a total of 12 coins (6+6), and if we go to

th [Thought]: The user's response indicates they can collect the same number of

th ghost coins as | can collect light coins on the path to the bathroom (B), giving
A us a total of 12 coins. This is the optimal choice for us both from the living

[ room, maximizing our combined coin collection at the start.

Er\: [Action]: agree(L to B)

gh [Message]: That sounds perfect! Going to the bathroom first gives us the
maximum number of coins, with 12 in total. Let's start by heading to the

(Self-play of GPT-40 baseline agent on a pair of six-node graphs)

bathroom!




Neurosymbolic agents

Agent WSR Partner WSR
QO / 4 N I\
@ .S [["L" IIE", 6] , [["L" "B", 5] ,
. Q b / QO @ OO ["L", "B"’ 4] , ["B", "K"’ 3] ,
N 5 L .S ~ .5
Q) b C'O‘ N NQ ‘g ["L "K", 2], oL ] ["B "A", 6], L. ]
> S < N S = N J L J
g & “§ &S
& Visited Remaining
Agent WSR | vV v v g N ( A
Partner WSR / / / [ "L" , "B" , "K" ] [ "L" , "E" ’ "A" , "C" ]
. . J J
Action History| vV ) )
Visited v v Action History Intermediate Best Path
.. e N A
Remaining v v [suggest (["L", "C"]),
agree—inner(["L", ncn] ) , ["L", "B", HK", "A", "E",
IBP \/ ask ("coin distribution "c", "L"]
between L and C")]
- AN /

Agent tends to confuse own graph and what it knows about the other agent's graph
— track symbolically what we know about other player's graph

Agent tends to generate invalid paths
— track of partial path that has been agreed on so far



Identical Correct Optimal

Baseline 99 /1 28
Grounding 100 65 25
State-tracking 99 86 17

Problem-solving 98 98 45




Improved agent can negotiate best solution

User: : = Great, let's head to the kitchen next! After that, would going to the children's room work for you? | can
collect 6 light coins on the way. There are also 3 coins to the empty room. How does that match up with your best
path from the kitchen?

Bot: : While going to the children's room from the kitchen would only yield 1 ghost coin for me, | can gather 6
ghost coins if we go to the empty room instead. How would this path work for you? Would you consider it given
your coin distribution, or do you think the previous suggestion aligns better with your own strategy going forward?
Could you also let me know what your best path forward from the empty room would be?

User: : Got it, let's head to the empty room then! From there, | can gather 6 light coins by heading to the attic.
How does this fit with your strategy moving from the empty room?

Bot: : Great, let's head to the empty room, and then from there, proceed to the attic. Going to the attic works
perfectly for me, as | can collect 5 ghost coins along that path. That moves us forward nicely. Could you let me
know about the light coins between the attic and the children's room? This should be our next stop based on our
progress so far.

User: : Perfect, let's head to the attic next! | can collect 6 light coins on our way there. For the following move,
going to the children's room sounds great as well — there are 3 light coins on that path. This should set us up well
to complete our journey! Let's continue this way.

Bot: : Perfect, let's make our way to the children's room. | can collect 6 ghost coins on the way there, which aligns
well with your path. Once we're in the children's room, heading back to the living room will complete our journey
and allow us to finish the game by visiting all rooms. I'll receive 4 ghost coins on that final path. Looks like we're
on the right track together — let's do this and wrap up our journey!

(self-play of two "problem-solving" agents with GPT-40)



Evaluation with human subjects

O:6
RESET
GRAPH

Living room

/

Completed Optimal Score >90%

Baseline 90 10 25
Problem-solving 76 80 32
T Kifchen |

(using the Slurk platform, Gotze et al. 2022)



https://slurp.ling.uni-potsdam.de/

e Baseline Col system struggles to maintain goal-oriented
dialogue to help user solve their problem.

e Keeping key information in symbolic memory and injecting it
into the thoughts helps both with problem-solving and with
conversational grounding.

e LLMs open up opportunities for (relatively) domain-independent
collaborative problem solving. Domain-specific pieces of our
prompting strategy could be easily replaced for other tasks.




How to establish trust?

. ’ human in the loop, via LLMs?
| '
NL specification formal specification — solution
LLM :
» solution
LLM cre 4 .
» formal specification — solution




Conclusion

1 m

|| Ms for solving complex problems Planning with LLMs

Optimization with LLMs Collaborative problem solving



Thank you!
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